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Abstract 

The Advanced Himawari Imager (AHI) onboard the recently launched next generation geostationary 

satellite, Himawari-8, provides an opportunity to improve Land Surface Phenology (LSP) detections over 

the Asia-Pacific region.  In this paper, we detected four phenological transition dates (PTDs) using the 

three-day Two-band Enhanced Vegetation Index (EVI2) time series from AHI based on the Hybrid 

Piecewise Logistic Model-Land Surface Phenology Detection (HPLM-LSPD) algorithm. The four PTDs 

are Start of Spring (SOS), End of Spring (EOS), Start of Fall (SOF) and End of Fall (SOF). We evaluated 

the four AHI-derived PTDs against those detected using eight-day EVI2 time series from the Moderate 

Resolution Imaging Spectroradiometer (MODIS) onboard the polar-orbiting satellite Terra, and three-day 

Green Chromatic Coordinate (GCC) time series from the Phenological Eyes Network (PEN) at six sites in 

central and northern Japan. The evaluation was performed by conducting regression analyses, and 

calculating root mean square difference (RMSD) and bias between satellite- and PEN-derived PTDs. First, 

the difference in the spatial variations of SOS and EOF timing between naturally vegetated areas, and 

urban areas and croplands indicates the anthropogenic footprints on LSP. Second, the RMSD of either 

AHI PTDs or MODIS PTDs against PEN PTDs were higher in the fall (i.e., SOF and EOF) than those in 

spring (i.e., SOS and EOS). Third, the later EOS and earlier SOF derived from satellite EVI2 relative to 

those derived from PEN GCC might be caused by the difference in the sensitivity of GCC and EVI2 to 

the increases in leaf area index (LAI) over high-LAI canopies. Fourth, the higher temporal resolution of 

AHI EVI2 only helped reduce the RMSD during spring compared to the RMSD for MODIS. In contrast, 

the RMSD for AHI PTDs and MODIS PTDs were comparable in fall. Finally, the between-sensor 

correlation in the spatiotemporal variability of the four PTDs was higher for SOS and EOF than those for 

EOS and SOF. 
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1. Introduction 

Land surface phenology (LSP) refers to the seasonal changes in remotely sensed greenness over 

vegetated land surfaces (de Beurs & Henebry 2005). LSP exerts a strong control over many important 

ecosystem processes such as carbon, water and nutrients cycling (Richardson et al. 2013), and is a 

sensitive indicator of both climatic and anthropogenic changes (Zhang et al. 2004b; de Beurs & Henebry 

2008; Richardson et al. 2013). Therefore, LSP has been widely detected from polar-orbiting satellites 

such as the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging 

Spectroradiometer (MODIS), at regional and global scales based on the seasonal dynamics of greenness 

indices such as Normalized Difference Vegetation Index (NDVI) and Enhanced vegetation index (EVI) 

(de Beurs & Henebry 2005; Ganguly et al. 2010; Zhang et al. 2018a). Although polar-orbiting satellites 

are able to provide daily observations with global coverage, frequent cloudy conditions can obstruct the 

accurate characterizations of LSP, particularly in cloud-prone regions (Zhang et al. 2006, 2017; Fensholt 

et al. 2007). For example, less than 10% of AVHRR observations over North America were cloud-free for 

any given month during 1982-2016 (Zhang, 2015), and MODIS observations in more than 27% of the 

Earth’s land surface could be consecutively affected by clouds for more than 16 days during vegetation 

growing seasons (Zhang et al., 2006). Prolonged cloudy conditions during vegetation growing seasons 

could significantly reduce the accuracy of LSP detections (Zhang et al., 2009).  

 Geostationary satellites offer sub-hourly observations, which allow much higher chances to 

obtain cloud-free observations (Fensholt et al. 2007; Guan et al. 2014; Yan et al. 2016a). The advantage 

of geostationary satellites has been demonstrated by comparing the data quality of NDVI composites 
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between MODIS and the geostationary Spinning Enhanced Visible and Infrared Imager (SEVIRI) during 

the rainy season across the cloud-prone West Africa (Fensholt et al., 2007). The results show that cloud-

free SEVIRI NDVI composites throughout the 2004 growing season accounted for 87% of the pixels in 

West Africa while cloudy MODIS NDVI composites occurred at least once in 96% of the pixels in the 

same region. Further, the LSP detections from SEVIRI and MODIS data were also inter-compared over 

the cloud-prone Congo Basin (Yan et al., 2016) and results show that SEVIRI is able to reveal more 

widespread seasonality of tropical rainforests than MODIS does. Currently, only a handful of studies have 

investigated LSP detections from geostationary satellites and compared them with LSP detections from 

polar-orbiting satellites (Sobrino et al. 2013; Guan et al. 2014; Yan et al. 2016a). However, such studies 

were only conducted in Africa while the performance of LSP detections from geostationary satellites is 

unknown in other continents. Moreover, there is a lack of quantitative comparisons between LSP detected 

using observations from geostationary and polar-orbiting satellites with ground-based observations as an 

independent reference.  

Evaluating the uncertainties in LSP detections is challenging because LSP is different from 

ground-based phenological observation in scale. Previous studies on LSP evaluations have mainly used in 

situ phenological observations (Zhang et al. 2006; Soudani et al. 2008; Ganguly et al. 2010; Liang et al. 

2011; Klosterman et al. 2014; Delbart et al. 2015; Rodriguez-Galiano et al. 2015) and gross primary 

productivity measured using the eddy covariance technique (Sakamoto et al. 2010; Gonsamo et al. 2012; 

Lu et al. 2018). However, the reference data used in these assessments are not intrinsically comparable 

with satellite-derived LSP. The emergence of observation networks, such as the Phenological Eyes 

Network (PEN) (http://www.pheno-eye.org/) and the PhenoCam Network 

(https://phenocam.sr.unh.edu/webcam/)  that employ tower-mounted camera to automatically collect 

time-lapse photography, greatly enriches the availability of ground-based phenological observations 

(Nasahara & Nagai 2015; Brown et al. 2016; Nagai et al. 2016b, 2018; Richardson et al. 2018a). These 

observations have been shown to be a robust tool to evaluate the LSP derived from satellite remote 

sensing (Klosterman et al. 2014; Richardson et al. 2018b). The PhenoCam Network mainly provides 

observations in the United States (Richardson et al., 2009a), while PEN mainly covers Japan with the 

recent extension to the Arctic and the Tropics (Nagai et al. 2018). The PEN was established in 2003 to 

provide long-term, continuous, and consistent ground-based phenological observations (Nasahara & 

Nagai 2015; Nagai et al. 2016b). It employs cameras mounted at different positions to provide a 

comprehensive picture of phenological changes in the ecosystem (Nagai et al. 2018). The time-lapse 

images collected by PEN have been used in a wide range of scientific studies including: 1) exploring the 

phenological changes at ground level in understudied ecosystems such as evergreen forests and tropical 

rainforests (Nagai et al. 2013, 2016a; Kobayashi et al. 2018), 2) evaluating the quality of satellite-derived 

LSP (Motohka et al. 2009), and 3) modeling ecosystem productivity (Nagai et al. 2010).  

The recently launched next generation geostationary satellite, Himawari-8, provides an 

opportunity to quantitatively evaluate LSP detections from geostationary satellites in the Asia-Pacific 

region.  This study presents the results from the first attempt to detect the phenological transition dates 

from the Advanced Himawari Imager (AHI) onboard the Himawari-8 geostationary satellite over central 

and northern Japan, and the evaluation results of the detected phenological transition dates. The 

evaluation was performed by comparing the detected phenological transition dates from AHI against 

those detected from MODIS and PEN at six selected sites during 2015 and 2016.  
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Himawari-8 was launched on October 7, 2014 and is positioned over the Equator at 140.7°E (Yu 

and Wu 2016). The AHI onboard Himawari-8 delivers a full disk scan covering the Asia-Pacific region 

every ten minutes with a nadir resolution of 500 – 1000m in the visible/near-infrared spectrum (Yu and 

Wu 2016). We obtained the spectral radiance of AHI band 3 (0.64 μm, nadir resolution 500 m) and band 

4 (0.86 μm, nadir resolution 1000 m) at a 20-minute interval during Tokyo local time 8:00am-4:00pm 

from May, 2015 to November, 2016 with a spatial coverage of central and northern Japan from the 

HimawariCloud dissemination service (Yu and Wu 2016). The band 3 radiance data were first resampled 

to match those of band 4 spatially. The radiance data were then converted to Top-of-Atmosphere (TOA) 

reflectance for calculating 20-minute EVI2 when solar zenith angle was less than 60° (Yan et al. 2016a; 

Yan et al. 2016b). Similar to EVI, EVI2 has the capability of reducing background noise and has 

enhanced sensitivity over dense vegetation canopies. In addition, EVI2 has been shown to have 

advantages over commonly used NDVI in LSP detections (Peng et al. 2017; Zhang et al. 2018b) and 

EVI2 has been widely used for LSP detections across a wide range of ecosystems globally (Liu et al. 

2017; Yan et al. 2016a; Yan et al. 2016b; Zhang 2015; Zhang et al. 2017). EVI2 was calculated using 

equation (1)(Jiang et al. 2008):  

��	 � 	
                                ���2 = �                                                                                                           

��	�
	��

(1) 

where NIR and R refer to the reflectance from AHI band 4 and band 3, respectively. EVI2 is originally 

developed for MODIS with G and c being 2.5 and 2.4 in equation (1), respectively. The original values of 

G and c have been adopted to calculate EVI2 from other sensors such as AVHRR (Zhang 2015) and the 

Visible Infrared Imaging Radiometer Suite (VIIRS) (Zhang et al. 2018a) for LSP monitoring. LSP 

generated using the EVI2 from AVHRR and VIIRS has been shown to have strong agreements with those 

derived from independent sources such as eddy covariance measurements (Zhang 2015) and PhenoCam 

Imagery (Zhang et al. 2018a). We therefore believe it is appropriate for us to use the original values of G 

(2.5) and c (2.4) in this study.   

The angular effects in AHI EVI2 were further minimized. To do this, each 20-minute EVI2 was 

converted to an EVI2 obtained under a reference sun-satellite geometry using equation (2) (Tian et al. 

2010): 

���� �� �� �	 �
                            ���2��	��, �	�� , �	��� = ���2���, �� , � �

�� ��� � ���
                               

������������	��

(2) 

where ���2��	��, �	�� , �	���  is the angularly-corrected  EVI2 under the reference sun-satellite 

geometry (�	�� = 45°, �	�� = 45°, �	�� = 90°);  � is the solar zenith angle, �  is the satellite zenith 

angle;  ∅ is the sun-satellite relative azimuth angle; ���2���, �� , ���is the original EVI2 obtained under 

the sun-satellite geometry (�� , �� , ��) at time &; FS and FR represent the kernel functions that model the 

variations in EVI2 due to changes in sun-satellite geometry. C0 and C1 are kernel weights that were 

determined as -0.08 and 0.02, respectively, for AHI EVI2 based on the method proposed in a previous 

study (Tian et al. 2010). Finally, a 3-day EVI2 time series was obtained by calculating the 90th percentile 

of all the 20-minute angularly-corrected EVI2 within each 3-day period during 2015-2016. Since AHI 

pixel size varies with the view zenith angle, we resampled EVI2 time series to 0.02° (~2000m) grid cells 

using a nearest neighbor method.  

  

2.2 MODIS EVI2 time series 

To compare with AHI LSP detections, we also generated EVI2 time series using the 8-day 500m 

MODIS surface reflectance product (MOD09A1) downloaded using the MODIS Land Products Global 

Subsetting and Visualization Tool (ORNL-DAAC 2018). The MODIS EVI2 time series was only 
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generated at six selected PEN sites in Japan, locations and land cover of which are described in detail in 

Section 2.4. Specifically, we first calculated EVI2 for each 500m pixel within a five-by-five pixel window 

centering at a given PEN site. Then for each 8-day period, we aggregated EVI2 by averaging EVI2 values 

from pixels with good quality within the five-by-five pixel window (based on the quality assurance data 

in the MOD09A1 product). A fill value was used if good quality pixels were less than half of the pixels 

within the window. Thus, the MODIS EVI2 was spatially comparable to AHI EVI2.  

 

2.3 Land surface temperature and snow cover time series from MODIS observations 

Satellite observations can be affected by snow during winter in mid- and high- latitude regions, 

which has significant impacts on LSP detections (Zhang et al., 2004). To determine winter period and 

remove snow-affected observations, we obtained land surface temperature (LST) and snow presence data 

in Japan during 2015-2016. Specifically, we downloaded the 8-day 1km MODIS land surface temperature 

(LST) product (MOD11A2) from NASA Earthdata (https://earthdata.nasa.gov/) and the MODIS 8-day 

500m snow cover product (MOD10A2) derived from the Normalized Difference Snow Index from the 

National Snow and Ice Data Center (https://nsidc.org/data/mod10a2) (Riggs et al. 1994). The MODIS 

LST and snow data were resampled to a spatial resolution of 0.02° to match that of AHI EVI2. Further, a 

3-day LST and snow time series were generated based on the interpolation method developed in Zhang 

(2015) to match the temporal resolution of the AHI EVI2 time series. 

 

2.4 Green chromatic coordinate time series from the Phenological Eyes Network  

We obtained hourly digital photographs from six sites of the PEN during 2015-2016. The 

geographic distribution and land cover of the selected sites is shown in Figure 1 and 2, respectively. The 

coordinates and dominant land cover of the selected sites are presented in supplemental Table S1. Among 

the six selected sites, the Mountain Tsukuba site (MTK) and the Takayama flux site (TKY) are located in 

mountainous areas, where the photographs were frequently filled with snow and dense fog. To address 

this issue, we downloaded the hourly photographs between 8:00 and 17:00 local standard time for each 

day during 2015-2016. In contrast, for the other four sites, we only downloaded the photograph taken at 

noon as the daily observation.  

We extracted greenness time series from digital photographs using the R package “Phenopix” 

(Filippa et al. 2016). First, we manually delineated the Region of Interest (ROI) for each site to only 

include the vegetated portion of a photograph in the analyses. The delineated ROIs for the selected PEN 

site are shown in Figure 2. We delineated a single ROI for each site except for the Mase flux site (MSE), 

where we delineated three ROIs: rice field in the foreground (ROI1), rice field in the upper left corner 

(ROI2), and trees in the background (ROI3) as outlined in Figure 2(d), respectively. This is because the 

seasonal greenness variation at the MSE site differed substantially among the three ROIs based on an 

initial visual assessment. For example, the harvest of the rice field in ROI2 was completed earlier than 

that of the rice field in ROI1 in both 2015 and 2016. Whereas the vegetation canopy in the three ROIs 

was fully exposed to the satellite’s field of view, the rice field in the foreground occupied the dominant 

portion of the photograph. Therefore, if we only delineated a single ROI for the MSE site, the differences 

in the seasonal greenness variation among the three ROIs would be eliminated and the phenology in this 

highly heterogeneous landscape could not be characterized accurately.  

We then calculated the Green Chromatic Coordinate (GCC) for each pixel to represent the 

vegetation greenness within the delineated ROIs based on equation (3) (Sonnentag et al. 2012): 

�
                                                                �'' =                                                                           �3� 

( + � + *

where R, G and B represent the digital number from the red, green and blue channels, respectively.  
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The GCC for a ROI was further calculated by averaging the values over all the pixels enclosed by 

the ROI, which was then used to generate the time series of three-day GCC for each ROI during 2015-

2016. Specifically, if hourly photographs were used to calculate GCC (i.e., MTK and TKY), the three-day 

GCC was determined using the 90th percentile of all the hourly GCC in a three-day period (Sonnentag et 

al. 2012; Toomey et al. 2015). In contrast, the maximum GCC from a given three-day period was 

determined as the three-day GCC if daily photographs were used (i.e., FHK, MSE, TGF and TSE). For 

each three-day period, we also generated a snow label by visual interpretation of the digital photographs. 

A label of “snow-present”  
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was denoted only if snow was present in all of the three days otherwise the three-day period was labelled as “snow-free”. We also generated a 

snow label for each eight-day period to match the temporal resolution of the aggregated MODIS EVI2 time series. 

223 

224 

 225 

 226 

Figure 1. The spatial variations in land cover and elevation across central and northern Japan. Black triangles represent the locations of the six 

selected PEN sites. The land cover map of Japan is derived from data obtained by the Advanced Land Observing Satellite (ALOS), the original 

data of which is provided by JAXA: http://www.eorc.jaxa.jp/ALOS/en/lulc/lulc_index.htm (©JAXA). 
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 230 

Figure 2. Land cover maps (first and third rows) and delineated ROI(s) (second and fourth rows) for 

selected PEN site. The land cover map is derived from data obtained by the Advanced Land Observing 

Satellite (ALOS), the original data of which is provided by JAXA: 

http://www.eorc.jaxa.jp/ALOS/en/lulc/lulc_index.htm (©JAXA). Solid black lines outline the delineated 

ROIs and the black cross on the land cover map represents the location of corresponding PEN site.  
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2.5 Detection of phenological transition dates from AHI, MODIS and PEN data  

We used the Hybrid Piecewise Logistic Model-Land Surface Phenology Detection (HPLM-LSPD) 

algorithm (Zhang 2015; Zhang et al. 2003) to detect the four phenological transition dates (PTDs 

hereafter) from three-day PEN GCC, eight-day MODIS EVI2, and three-day AHI EVI2 time series, 

respectively. The four PTDs are Start of Spring (SOS), End of Spring (EOS), Start of Fall (SOF) and End 

of Fall (EOF) (Zhang et al. 2018a). SOS refers to the onset of rapid greenness increase in early spring 

whereas EOS represents the timing when greenness starts to reach a maximum level or in other words, the 

end of greenup phase (Zhang et al. 2003). In contrast, SOF corresponds to the timing when greenness 

starts to undergo gradual decreases whereas EOF represents the timing when plant canopy reaches the 

dormancy status or in other words, the greenness minimum (Zhang et al. 2003; Liu et al. 2017).  

The following is a brief description of how HPLM-LSPD was used to detect PTDs in this study 

and a general term of vegetation index (VI) was used to refer to PEN GCC, MODIS EVI2, and AHI EVI2 

in the following description. For each AHI and MODIS pixel or PEN ROI, we applied the HPLM-LSPD 

algorithm in four steps (Zhang 2015). (1) We first determined the background VI as the mean value of the 

five largest good quality VI values during the dormancy period that was defined as the time period when 

LST was lower than 5°C. (2) We then smoothed the VI time series by filling the gaps due to missing or 

low-quality observations. The irregular VI values were then smoothed using the Savitzky-Golay filter 

(Chen et al. 2004) and a local median filter. (3) We further fitted logistic curves to the smoothed VI time 

series to reconstruct the VI temporal trajectory. (4) Finally, we calculated the rate of change in curvature 

from the reconstructed VI temporal trajectory. The four PTDs correspond to the local extreme values of 

the rate of change in the curvature of the reconstructed VI trajectory (Zhang et al. 2003).  

Note that since LST and the information of snow presence/absence serve as important ancillary 

data in detecting PTDs using HPLM-LSPD algorithm, the MODIS LST and the snow presence/absence 

information derived from PEN imagery (described in detail in Section 2.4) were employed in the 

detection of PTDs from VI time series of AHI, MODIS and PEN at the six study sites. We did not use 

satellite-derived snow presence/absence information because we believe the PEN imagery can provide 

sufficiently accurate snow presence/absence information given the relatively fine spatial scale of our 

study (~2km). This is also to make sure that any differences in the PTDs derived from different sensors 

are results of the differences in VI rather than those in the ancillary data. In contrast, the MODIS snow 

cover and LST were used in detecting PTDs from AHI data at locations other than the six sites. 

For a given PEN site, if more than one ROI was delineated on the digital photographs, the 

HPLM-LSPD algorithm was applied for each ROI separately, and the mean value of each PTD was 

calculated for that site. Note that one additional step was taken to determine GCC-derived EOF for the 

two rice field ROIs delineated for the MSE site in 2016. Specifically, after the rice fields were harvested, 

green sprouts from the remaining rice stubbles were seen for a very brief period before the fields were 

plowed (supplemental Figure S1). We therefore replaced the EOF determined using HPLM-LSPD with 

the plowing day.  

 

2.6 Characterizing the spatial patterns of phenological transition dates  

We obtained land cover and elevation data to facilitate the characterization of the spatial 

variations in PTDs among different types of land cover, and across elevation and latitudinal gradients. 

Specifically, we downloaded the land cover product derived from observations acquired by the Advanced 

Visible and Near Infrared Radiometer type 2 (AVNIR-2) onboard the Advanced Land Observing Satellite 

(ALOS) (Hashimoto et al. 2014). The ALOS land cover product has a 10m spatial resolution and can be 

accessed via: https://www.eorc.jaxa.jp/ALOS/en/lulc/lulc_index.htm. We chose the ALOS land cover 

product because it has ‘rice paddy’ as an individual land cover class, which is a very important land cover 
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in central and northern Japan, and has different plough/harvest schedules from other crops. In addition to 

rice paddy, we also focused on the following five types of land cover: urban, non-rice crop, grass, 

deciduous forest and evergreen forest. We obtained the elevation data for our study area by downloading 

the GTOPO30 digital elevation model from the U.S. Geological Survey EarthExplorer 

(https://earthexplorer.usgs.gov/).  The GTOPO30 digital elevation model has a spatial resolution of 30 

arc-second. We then resampled the land cover and elevation data to 0.02 degree using a nearest neighbor 

method to match the spatial resolution of detected PTDs. We further divided our study area into low (0-

200m), medium (200-500m) and high (500-3100m) elevation zones, so that each zone has one third of the 

total 0.02° grid cells in our study area. In order to examine the PTD changes across latitudes, we divided 

our study area into low (35°N-38.5°N), medium (38.5°N-42°N) and high (42°N-45.5°N) latitudinal zones. 

Finally, we examined the relationship between land cover and PTD outliers. For example, the outliers in 

SOS were determined based on the following two steps. We first sorted the 0.02° grid cells in our study 

area in ascending order based on their average SOS timing during 2015-2016. We then determined the 

grid cells that fell below the 10th percentile or lay above the 90th percentile of the SOS timing as outliers. 

Then, for any given land cover, we generated a measure of its tendency in being SOS outliers by dividing 

the number of grid cells from this land cover and classified as SOS outliers to the total number of 0.02° 

grid cells of this land cover in the study area. We also repeated this analysis for the other three PTDs. 

 

2.7 Evaluation of AHI phenological transition dates against those from MODIS and PEN 

We evaluated the PTDs detected from AHI EVI2 by comparing them with those detected from 

MODIS EVI2 and PEN GCC time series. Taking SOS that was derived from PEN (SOSPEN) and AHI data 

(SOSAHI) as an example of the evaluation analyses, we first calculated the Root Mean Square Difference 

(RMSD) and Bias between SOSPEN and SOSAHI across the six sites in 2015 and 2016. We then conducted 

linear regression analyses by using SOSAHI as the dependent variable and SOSPEN as the independent 

variable to retrieve the R-square (R2) and statistical significance (p value). These analyses were repeated 

for the other three PTDs (EOS, SOF, and EOF), and between MODIS and PEN PTDs. In addition, the 

linear regression analyses were also conducted between PTDs detected from AHI and MODIS data with a 

given PTD from AHI and MODIS as the independent and dependent variable, respectively. 
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3. Results 

3.1 Spatial patterns of the phenological transition dates detected from AHI EVI2 time series 

Figures 3-6 present the general spatial patterns of the four PTDs along with their variations 

among different types of land cover, and across elevation and latitudinal gradients. The average timing of 

SOS during 2015-2016 primarily fell between late March and early May (Figure 3a). The direction of 

changes in SOS timing across elevation and latitudinal gradients varies with land cover. Specifically, SOS 

timing of grass, deciduous and evergreen forests exhibited delays with increases in either elevation or 

latitude (Figure 3b-3d). For urban, rice paddy and non-rice crop, however, delays in SOS timing 

associated with increasing elevation only occurred in the high latitude zone (Figure 3b). Meanwhile, 

delays in SOS timing associated with increases in latitude were only found for non-rice crop, rice paddy 

in the high elevation zone, and urban areas in the medium and high elevation zones (Figure 3b-3d). The 

average timing of EOS during 2015-2016 predominately fell in the period from mid-May to mid-July 

(Figure 4a). In contrast to SOS timing, EOS timing exhibited advances with increasing elevation, 

especially in the low and medium latitude zones (Figure 4c and 4d). In addition, for a given type of land 

cover within a given elevation zone, EOS timing did not exhibit consistent changes across latitudes except 

the delayed EOS of deciduous forest in the medium elevation zone. The average timing of SOF during 

2015-2016 primarily fell between mid-August and early October (Figure5a). There were no distinct 
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changes in SOF timing across elevation gradients except for rice paddy and non-rice crop in the low 

latitude zone (Figure 5d), and urban area in the high latitude zone (Figure 5b). In addition, for a given 

type of land cover within a given elevation zone, SOF timing in the high latitude zone tended to be much 

earlier than those in the low and medium latitude zones. The average timing of EOF during 2015-2016 

predominately fell in the period from early November to late December (Figure 6a). In contrast to SOS 

timing, the EOF timing of grass, deciduous and evergreen forests exhibited advances with increases in 

either elevation or latitude (Figure 6b-6d). For urban, rice paddy and non-rice crop, changes in EOF 

timing across latitudinal gradients were more distinct than those across elevation gradients. Specifically, 

advances in EOF timing with increasing latitudes were found for all six types of land cover in almost all 

elevation zones while consistent changes in EOF timing across elevation gradients were only found in 

urban area in the low latitude zone, and non-rice crop in the high latitude zone. Figure 7 presents the 

variations in the percentage of 0.02° grid cells from a given land cover class being outliers for each of the 

four PTDs. Urban and rice paddy were the two land cover classes that had the highest percentage of grid 

cells being outliers for SOS, EOS and EOF (Figure 7a, 7b and 7d). Evergreen forest and urban had the 

highest percentage of grid cells being outliers for SOF (Figure 7c). In contrast, grass and deciduous forest 

had the lowest percentage of grid cells being outliers for all of the four PTDs. 
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 347 

Figure 3. Spatial pattern of the average SOS detected in 2015 and 2016 (a), and the variations in the average SOS among different types of land 

cover, and across latitudinal and elevation gradients (b-c). In Panel (a), each color bar in the legend represents 10% of the total number of 0.02° 

grid cells in the study area. Panel (b), (c) and (d) represents grid cells located in the high (42°N-45.5°N), medium (38.5°N-42°N) and low (35°N-

38.5°N) latitude zones, respectively. Each bar represents the mean value of SOS for grid cells from a given type of land cover within a given 

elevation zone. The standard deviation associated with each bar is presented in supplemental Table S2. The label ‘L’ and ‘M’ and ‘H’ represents 

the low (0-200m), medium (200-500m) and high (500-3100m) elevation zones, respectively. 
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 355 

Figure 4. Spatial pattern of the average EOS detected in 2015 and 2016 (a), and the variations in the average EOS among different types of land 

cover, and across latitudinal and elevation gradients (b-c). In Panel (a), each color bar in the legend represents 10% of the total number of 0.02° 

grid cells in the study area. Panel (b), (c) and (d) represents grid cells located in the high (42°N-45.5°N), medium (38.5°N-42°N) and low (35°N-

38.5°N) latitude zones, respectively. Each bar represents the mean value of EOS for grid cells from a given type of land cover within a given 

elevation zone. The standard deviation associated with each bar is presented in supplemental Table S3. The label ‘L’ and ‘M’ and ‘H’ represents 

the low (0-200m), medium (200-500m) and high (500-3100m) elevation zones, respectively. 
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 365 

Figure 5. Spatial pattern of the average SOF detected in 2015 and 2016 (a), and the variations in the average SOF among different types of land 

cover, and across latitudinal and elevation gradients (b-c). In Panel (a), each color bar in the legend represents 10% of the total number of 0.02° 

grid cells in the study area. Panel (b), (c) and (d) represents grid cells located in the high (42°N-45.5°N), medium (38.5°N-42°N) and low (35°N-

38.5°N) latitude zones, respectively. Each bar represents the mean value of SOF for grid cells from a given type of land cover within a given 

elevation zone. The standard deviation associated with each bar is presented in supplemental Table S4. The label ‘L’ and ‘M’ and ‘H’ represents 

the low (0-200m), medium (200-500m) and high (500-3100m) elevation zones, respectively. 
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 377 

Figure 6. Spatial pattern of the average EOF detected in 2015 and 2016 (a), and the variations in the average EOF among different types of land 

cover, and across latitudinal and elevation gradients (b-c). In Panel (a), each color bar in the legend represents 10% of the total number of 0.02° 

grid cells in the study area. Panel (b), (c) and (d) represents grid cells located in the high (42°N-45.5°N), medium (38.5°N-42°N) and low (35°N-

38.5°N) latitude zones, respectively. Each bar represents the mean value of EOF for grid cells from a given type of land cover within a given 

elevation zone. The standard deviation associated with each bar is presented in supplemental Table S5. The label ‘L’ and ‘M’ and ‘H’ represents 

the low (0-200m), medium (200-500m) and high (500-3100m) elevation zones, respectively. 
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 384 

Figure 7. Variations in the percentage of the 0.02° grid cells from a given land cover class being outliers 

for SOS (a), EOS (b), SOF (c) and EOF (d). 
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3.2 Differences in the greenness trajectories and detected phenological transition dates from AHI, MODIS 

and PEN data 

Figure 8 presents the original and reconstructed time series of PEN GCC, MODIS EVI2, and AHI 

EVI2 during 2015 and 2016 at the six PEN sites. Their temporal patterns were generally similar albeit the 

distinct differences between the original GCC and EVI2 time series. For example, at the three forest sites 

in central Japan (i.e., FHK, MTK and TKY), the original GCC time series showed substantial decreases 

during summer whereas the original MODIS and AHI EVI2 time series maintained a relatively stable 

plateau (Figure 8a, 8c and 8e). In addition, the short-term disturbance that was picked up by the GCC 

time series at MSE (i.e., the abrupt GCC decrease in ROI1 during late 2016) and TGF (i.e., the rapid 

decrease and recovery of greenness in the middle of 2015 and 2016) were not visible in both the MODIS 

and AHI EVI2 time series. Note that the GCC time series from the other two ROIs at MSE can be found 

in supplemental Figure S2.  

Table 1 summarizes the bias and RMSD between the PTDs derived from PEN and satellite data. 

Specifically, SOSAHI occurred as long as 16 days before SOSPEN at TGF in 2015 whereas the longest 

advance of SOSMODIS relative to SOSPEN was 22 days at MTK in 2015. Both SOSAHI and SOSMODIS 

showed the longest delay relative to SOSPEN at MSE in 2016 with the delay being 21 and 27 days, 

respectively. The longest advance of satellite-derived EOS relative to that derived from PEN occurred at 

TSE in 2015 with EOSAHI and EOSMODIS occurring 23 and 26 days before EOSPEN, respectively. Relative 
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to EOSPEN, the longest delay in satellite-derived EOS was 38 days for AHI at TGF in 2016, and 68 days 

for MODIS at TKY in 2015. The difference in SOF ranged from SOFAHI and SOFMODIS occurring 57 and 

59 days in advance of SOFPEN, respectively, at TKY in 2016 to 39 and 38 days behind SOFPEN at TSE in 

2016 and at TGF in 2015, respectively. EOFAHI consistently occurred after EOFPEN during 2015 and 2016 

across the six sites with a minimum and maximum delay of four days at TSE in 2015 and 45 days at MTK 

in 2015, respectively. In contrast, the difference between EOFMODIS and EOFPEN ranged from EOFMODIS 

occurring 23 days before EOFPEN at TSE in both 2015 and 2016 to EOFMODIS occurring 35 days after 

EOFPEN at MSE in 2015.  

In Table 1, the direction of the overall bias of satellite-derived PTDs relative to those derived 

from PEN imagery were consistent between AHI and MODIS, except for SOS. For AHI, the overall bias 

ranged from SOF occurring 15 days before PEN-derived SOF to EOF occurring 22 days behind PEN-

derived EOF. For MODIS, the overall bias ranged from SOF occurring 4 days before PEN-derived SOF 

to EOS occurring 23 days behind PEN-derived EOS.  

The RMSD between satellite-derived and PEN-derived PTDs (Table 1) were lower in spring (i.e., 

SOS and EOS) than that during fall (i.e., SOF and EOF). In addition, the RMSD between PTDs derived 

from AHI and PEN were smaller than those between PTDs from MODIS and PEN for SOS and EOS (i.e., 

during the green-up phase). In contrast, the RMSD between PTDs derived from AHI and PEN were 

comparable to those between PTDs from MODIS and PEN for SOF and EOF (i.e., during the senescence 

phase).  

Figure 9 displays the correlation between the spatiotemporal variability in PTDs derived from 

each two of PEN, MODIS, and AHI during 2015 and 2016 across the six sites. Except SOF, the PEN and 

AHI PTDs were significantly correlated (p < 0.05) with the highest R2 of 0.75 between PEN and AHI-

derived SOS (Figure 9a-9d). In contrast, significant correlations were only found between PEN and 

MODIS SOS and EOF with an R2 of 0.46 and 0.41, respectively (Figure 9e-9h). Similarly, for AHI and 

MODIS PTDs, significant correlations were only found between SOS and EOF with an R2 of 0.59 and 

0.57, respectively (Figure 9i-9l). A complete summary of the regression statistics can be found in 

supplemental Table S6. 
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 433 

Figure 8. Comparison of greenness trajectories and PTDs derived from EVI2 with those from GCC at the 

six sites during 2015-2016. Solid green and black circles represent the original snow-free and snow-

affected EVI2/GCC, respectively. The grey solid lines represent the reconstructed greenness trajectories. 

The blue dashed lines represent the detected SOS and EOS whereas orange dashed lines represent SOF 

and EOF. 
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Table 1. A comparison of the four PTDs detected from GCC with those derived from EVI2 time series (e.g., ΔSOSAHI = SOSAHI - SOSPEN and 

ΔSOSMOD = SOSMODIS - SOSPEN). Positive (negative) bias indicates a PTD derived from satellite data is later (earlier) than that derived from PEN 

imagery. All the numbers have been rounded to the nearest integer.  
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  SOSPEN ΔSOSAHI ΔSOSMOD EOSPEN ΔEOSAHI ΔEOSMOD SOFPEN ΔSOFAHI ΔSOFMOD EOFPEN ΔEOFAHI ΔEOFMOD 

FHK 

2015 104 -1 1 145 -7 26 243 0 28 317 10 -8 

2016 103 0 -2 136 -3 12 278 -41 -58 329 7 0 

MSE 

2015 111 -1 10 155 35 33 226 3 2 287 31 35 

2016 111 21 27 162 29 7 230 2 -12 298 13 28 

MTK 

2015 112 2 -22 123 -1 33 269 -37 10 307 45 31 

2016 107 1 -2 126 2 26 267 -33 10 322 43 15 

TGF 

2015 95 -16 -10 156 21 35 270 -29 38 335 13 25 

2016 94 -10 8 151 38 23 272 -4 8 317 36 25 

TKY 

2015 124 3 12 139 5 68 265 1 -12 292 21 -6 

2016 129 -4 -17 150 1 45 293 -57 -59 310 20 10 

TSE 

2015 123 -3 8 183 -23 -26 253 -21 -9 296 22 -23 

2016 124 -2 16 169 -7 -7 230 39 11 303 4 -23 

  RMSD  8 14  20 33  29 29  26 22 

  Overall 

    Bias 
 -1 2  8 23  -15 -4  22 9 
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 443 

Figure 9. Regressions of PTDs detected from PEN and satellite data during 2015 and 2016 across the 12 

sites. The dotted line represents the 1:1 line while the solid line represents the fitted regression line. 
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4. Discussion 

4.1 The anthropogenic footprints on the spatial variations in SOS and EOF in central and northern Japan 

The results from the analyses on the spatial variations in SOS and EOF (Figures 3, 6 and 7) 

highlight the anthropogenic footprints in the study area. In the mid-latitude region of the northern 

hemisphere, temperature plays one of the most important role in mediating the timing of SOS and 

EOF(Zhang et al. 2004a). In central and northern Japan, the spatial variations of SOS and EOF timing in 

grass, deciduous and evergreen forests were consistent with temperature changes across gradients in 

either latitude or elevation, which is in agreement with findings from multiple studies (Zhang et al. 2004a; 

Xie et al. 2017; An et al. 2018). In urban areas and croplands, however, the spatial variations of SOS and 

EOF timing were only consistent with changes in temperature across gradients in latitude and elevation in 

certain parts of the study area. This can be explained by that while the SOS and EOF of grass, deciduous 

and evergreen forests are predominately mediated by temperature, the “urban heat island” effect 

associated with altered surface albedo and increased aerosols can affect the temperature regime (Krehbiel 

et al. 2017), and management practices are likely more important than temperature in mediating SOS and 

EOF timing in croplands of the study area (Suepa et al. 2016). Numerous previous studies have also 

reported the significant impacts from anthropogenic activities such as urbanization and irrigation on SOS 

and EOF of urban areas (Zhang et al. 2004b; Buyantuyev & Wu 2012; Walker et al. 2015; Krehbiel et al. 

2017) and croplands (Sakamoto et al. 2006; Suepa et al. 2016), respectively. The changes in the 

percentage of grid cells being outliers for SOS and EOF in Figure 7 also demonstrates the impacts from 

anthropogenic activities. Specifically, urban areas and croplands had higher percentage of grid cells being 

outliers for SOS and EOF than those from grass, deciduous and evergreen forests. In addition, although 

grass in the study area tended to have very low percentage of grid cells being SOS and EOF outliers, 

some very noticeable EOF outliers occurred in the grass-dominated coastal areas of northern Japan 

(Figure 6a). By examining a high-resolution Google Earth image of this area, we speculated that these 

grass-dominated areas were managed for livestock grazing purposes (supplemental Figure S3). Therefore, 

the very late EOF timing in these areas likely resulted from the management practices favorable for 

longer growing seasons.  

In contrast to SOS and EOF, no distinct differences were found between the naturally vegetated 

areas (i.e., grass, deciduous and evergreen forests), and urban and croplands in terms of the spatial 

variations in EOS and SOF across the gradients in latitude and elevation (Figures 4 and 5). Furthermore, 

the spatial variations in EOS and SOF were much more complicated than those in SOS and EOF. One 

likely explanation is that, the spatial variations in other environmental factors such as water availability 

also affect those in EOS and SOF. Since few previous studies have focused on the mediating factors of 

variations in EOS and SOF across spatial gradients, this subject needs thorough examinations in future 

studies. 

 

4.2 Impacts of atmospheric effects and land surface disturbances on the reconstruction of greenness 

trajectories 

Substantial decreases in GCC during summer were evident at the two mountainous sites MTK 

and TKY (Figure 8). By reviewing the photograph archives, it was found that the GCC decrease owed to 

the atmospheric effects such as dense fog or high humidity accumulation on camera lens (supplemental 

Figure S4-S5). These atmospheric effects also affected the time series of AHI and MODIS EVI2 resulting 

in the low EVI2 values. However, unlike the continuously low PEN GCC, the AHI EVI2 time series were 

able to maintain a relatively stable plateau during the same time period. This is because the GCC time 

series was generated from hourly observations while the AHI EVI2 time series was generated from 
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observations at a 20-mintue interval. Therefore, AHI EVI2 had higher chances of acquiring observations 

free of significant atmospheric impacts (supplemental Figure S4-S5). In contrast, no prolonged cloudy or 

foggy conditions were identified at FHK, where the GCC decrease during summer was likely related to 

the reduced contrast between reflectance from green and red wavelengths (Elmore et al. 2012). At MSE 

and TGF, abrupt changes occurred in the GCC time series. The abrupt GCC changes at MSE was due to 

the removal of green sprouts from rice stubbles in late October of 2016 (supplemental Figure S1) whereas 

the quick decrease and recovery in GCC in the middle of 2015 and 2016 at TGF were due to the removal 

of grasses and the rapid regrowth afterwards (supplemental Figure S6). These land surface disturbances 

were mainly restricted to the region close to MSE and TGF, which only accounted for a small portion of 

the corresponding MODIS and AHI pixels. As a result, the local abrupt greenness changes had little 

influences on MODIS and AHI EVI2 time series. 

Although noisy data appeared in the original time series of PEN GCC, MODIS EVI2, and AHI 

EVI2, the HPLM-LSPD algorithm is able to reconstruct the greenness trajectories and detect the 

phenological transitions. This is due to the fact that the HPLM-LSPD algorithm reconstructs a greenness 

trajectory by following the upper boundary of the greenness time series (Zhang 2015), which would 

automatically filter out the low values typically associated with atmospheric effects and land surface 

disturbances. In addition, it has been demonstrated that reconstruction of greenness trajectory using the 

HPLM-LSPD algorithm is reliable as long as there is one good quality observation every eight days 

(Zhang et al. 2009). Snow cover and land surface temperature data are important ancillary data in PTD 

detection using the HPLM-LSPD algorithm (Zhang 2015). Although we used MODIS snow and land 

surface temperature products to facilitate the detection of PTDs from AHI EVI2 time series, it is also 

possible to generate these two types of ancillary data from AHI observations. Specifically, the 

Normalized Difference Snow Index, which is used to generate the MODIS snow product (Riggs et al. 

1994), can also be derived from AHI Band 2 (0.51 µm) and 5 (1.61 µm). In addition, a land surface 

temperature retrieval algorithm using AHI data has also been developed in a recent study (Choi & Suh 

2018). 

 

4.3 The impacts of the difference between phenological changes in spring and fall on LSP monitoring 

using PEN and satellite data. 

The RMSD between PTDs derived from PEN and satellite data during 2015-2016 across the six 

study sites reveals an interesting contrast between spring and fall phenology. For example, the RMSD for 

AHI increased from 8 (SOS) and 20 (EOS) days in spring to 26 (EOF) and 29 (SOF) days in fall. The 

RMSD for MODIS-derived PTDs had similar variations, which ranged from 14 (SOS) and 33 (EOS) days 

in spring to 22 (EOF) and 29 (SOF) days in fall. This is consistent with the findings from previous studies 

in which PTDs derived from digital cameras are used as the reference to evaluate their counterparts 

derived from sensors such as Landsat TM and ETM+ (Melaas et al. 2016), MODIS (Hufkens et al. 2012; 

Klosterman et al. 2014) and VIIRS (Zhang et al. 2018a). The increases in the RMSD between PEN and 

satellite-derived PTDs from spring to fall can be attributed to the mismatch in the scale of observation 

coupled with the increased between-canopy variability in phenological changes from spring to fall. 

Specifically, compared to the green-up phase in spring, there is greater between-canopy difference in the 

rate of change in leaf coloration during fall (Melaas et al. 2016). Therefore, given the low between-

canopy variability in spring, the phenological changes within the small areas observed by the camera can 

be representative of those in the bigger ground areas related to a satellite pixel. In contrast, the higher 

between-canopy variability in fall renders greater difference between the phenological changes observed 

by the camera and the satellite thus leading to higher RMSD.  

It is worth noting that the direction of bias in EOS, SOF and EOF relative to those derived from 

PEN were consistent between AHI and MODIS. Specifically, both AHI-derived and MODIS-derived 
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EOS were later than PEN-derived EOS by an average of 8 and 23 days, respectively. This is likely due to 

the different sensitivity of GCC and EVI2 to changes in leaf area index (LAI) over canopies with high 

LAI. EOS represents the timing when plant canopy reaches maturity during late spring. Results from a 

previous study on the relationship between GCC and LAI at a temperate deciduous forest site indicate that 

peak GCC occurs about two weeks in advance of maximum LAI (Keenan et al. 2014). This is similar to 

the behavior of NDVI, which also has been found to becoming saturated when LAI reaches a certain 

threshold (Huete et al. 2002; Jiang et al. 2008). In contrast, EVI2 was developed to have enhanced 

sensitivity over high-LAI canopies (Jiang et al. 2008). For our study sites, it is possible that when canopy 

LAI reached a certain threshold, GCC became saturated whereas satellite-derived EVI2 was still sensitive 

to the increasing LAI, which resulted in a later EOS relative to that derived from GCC. This different 

sensitivity of GCC and EVI2 to LAI dynamics over high-LAI canopies can also be used to explain the 

earlier SOF derived from EVI2 than that derived from GCC. Specifically, SOF refers to the start of leaf 

senescence. Therefore, it is possible that while EVI2 was sensitive to the decreases in LAI, GCC stayed 

being saturated until LAI dropped below a certain threshold, which led to that SOF derived from AHI and 

MODIS EVI2 occurred earlier than the SOF derived from GCC. The positive bias of satellite-derived 

EOF relative to the PEN-derived EOF can be explained by that the high between-canopy variability in 

leaf senescence coupled with the larger ground area associated with a satellite pixel resulted in a slower 

leaf senescence process than that observed by cameras thus resulting in a delayed EOF relative to that 

from PEN. 

The RMSD for AHI-derived PTDs was no higher than 60% of the RMSD of MODIS-derived 

PTDs in spring whereas the RMSD for AHI-derived PTDs was equivalent to or even slightly higher that 

of MODIS-derived PTDs during fall. In other words, PTDs derived from three-day AHI EVI2 time series 

exhibited improvements over those derived from eight-day MODIS EVI2 time series only during spring, 

which we believe related to the differences between the limiting factors of LSP detection in spring and 

fall. Specifically, the six PEN sites included in this study are located in temperate ecosystems with strong 

deciduousness, the greenup phase of which tends to unfold rapidly therefore generating a strong signal of 

greenness increases (Hufkens et al. 2012; Melaas et al. 2016; Zhang et al. 2018a). The steep slopes of the 

greenness trajectories during spring at the three forest sites FHK, MTK and TKY, and at the cropland site 

MSE in Figure 8 serve as great examples of this rapid greenness increase. As a result, the higher temporal 

resolution of the AHI EVI2 time series help better characterize this rapid greenness increase, thus led to 

lower RMSD. In contrast, the greenness decrease in fall tends to be gradual, and more importantly, it is 

dominated by colors of red, yellow and brown instead of green (Zhang et al. 2018a). Given the slow leaf 

coloration in fall, it is likely that the temporal resolution of EVI2 time series is no longer the dominant 

limiting factor. Therefore, since the same vegetation index, EVI2, was used in the detection of PTDs from 

AHI and MODIS, it is not surprising that there was comparable RMSD for AHI- and MODIS-derived 

PTDs in fall.  

Figure 9 presents the between-sensor comparison of the correlation in the spatiotemporal 

variability of the four PTDs across the six sites between 2015 and 2016. For each of the three between-

sensor comparisons, the correlations were relatively strong for SOS and EOF whereas the correlations for 

the two mid-season PTDs (i.e., EOS and SOF) were very weak except between AHI- and PEN-derived 

EOS. We did not find completely consistent results from previous studies. For example, Klosterman et al. 

(2014) quantifies the correlations between the same four PTDs derived from PhenoCam and MODIS data 

based on different curve-fitting methods across 13 temperate deciduous sites in the United States (a total 

of 81 site-years of data). Results show that the R2 for EOS is very similar to that of SOS and EOF while 

SOF has the lowest R2 among the four PTDs, which ranges from 0.11 to 0.32. Zhang et al. (2018) also 

quantifies the correlations between the same four PTDs derived from PhenoCam and VIIRS data at 82 

sites from the United States (~160 site-years of data). Results show that the R2 is no less than 0.78 for all 

the four PTDs. We therefore speculate the low R2 for EOS and SOF in our study might be caused by the 
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low number of available samples. This is a limitation of our study and more samples from PEN and 

satellite data are needed to evaluate SOF and EOS more thoroughly in future studies. 

590 

591 

 592 

5. Conclusion 

In this study, we present the first LSP detection results from AHI EVI2 and compare them against 

those derived from MODIS EVI2 and PEN GCC at six sites in central and northern Japan during 2015-

2016. The difference in the spatial variations of SOS and EOF timing between naturally vegetated areas, 

and urban areas and croplands indicates the anthropogenic footprints on LSP. The spatial variations of 

EOS and SOF timing are relatively complicated and the mediating factors need to be examined in future 

studies. 

Our results also highlight the advantage of using high-frequency observations from AHI to obtain reliable 

greenness trajectories in the regions where unfavorable atmospheric conditions can prevail for a 

prolonged period of time. This indicates that AHI holds great potential to achieve improved LSP 

detections in other cloud-prone ecosystems in the Asia-Pacific region such as the tropical forests in 

Southeast Asia. However, our results also show that while the high frequency observations from AHI 

helped reduce the uncertainty in PTD detections during spring, they did not provide an overall 

improvement during the leaf senescence phase. This is because leaf phenology is mediated by changes in 

multiple leaf traits such as LAI, leaf chlorophyll and water content, leaf biomass and photosynthetic rates. 

Previous studies have shown that there are larger divergence in the changes of these leaf traits during the 

leaf senescence phase than during the green-up phase (Keenan et al. 2014; Lu et al. 2018). Since 

greenness indices mainly track changes in LAI and leaf chlorophyll content, they cannot provide a full 

picture of phenological changes during the leaf senescence phase, even with the increased observation 

frequency. Therefore, there is a need for using multiple remote sensing perspectives to characterize 

phenological changes during the leaf senescence phase instead of solely relying on greenness indices. 

Fortunately, several recently launched and upcoming satellite-borne instruments have the capability to 

provide insights into leaf senescence phenology that are complementary to those offered by greenness 

indices. For example, results from Lu et al. (2018) have demonstrated that solar-induced chlorophyll 

fluorescence (SIF) can better track changes in leaf photosynthesis during the senescence phase than GCC 

and NDVI in a temperate forest. Therefore, the high frequency SIF measurements from NASA’s 

Geostationary Carbon Observatory (scheduled for launch in the early 2020s) (Moore et al. 2018) and 

ESA’s Tropospheric Monitoring Instrument (TROPOMI, launched in October 2017) (Köehler et al. 2018) 

are very promising in improving the monitoring of leaf senescence phenology at continental and global 

scales. In addition, the full-range (400-2500nm) hyperspectral measurements from the Hyperspectral 

Imager Suite (HISUI), and the Lidar data from the Global Ecosystem Dynamics Investigation (GEDI) 

onboard the International Space Station can also provide new insights into changes in leaf water content 

and biomass during the leaf senescence phase at the global scale (Stavros et al. 2017). 

 

It is important to note that there is a wide variety of ecosystems within AHI’s observation area 

ranging from drylands such as those in northwestern China and Australia to the tropical forests in 

Southeast Asia. Previous studies have demonstrated that it can be very challenging to have accurate LSP 

detections using satellite data in ecosystems such as drylands (Broich et al. 2014) and tropical forests 

(Guan et al. 2014; Yan et al. 2016b). Since we only focused on six sites in the temperate ecosystems of 

central and northern Japan, the evaluation results presented in this paper cannot provide a comprehensive 

picture of the applicability of AHI data in LSP detections, which needs to be examined using reference 

data (e.g., in situ phenological observations or time-lapse images from ground observation networks) 

from diverse types of ecosystems in future studies. 
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Supplementary table 

Table S1. Geographic coordinate and land cover of the study sites. 

993 

994 

Site Latitude/Longitude Land cover 

Fuji-Hokuroku          (FHK) 35.44°N / 138.76°E Deciduous needleleaf forest 

Mase flux site           (MSE) 36.05°N / 140.03°E Rice paddy 

Mt. Tsukuba             (MTK) 36.23°N / 140.10°E Mixed forest 

TERC grass field      (TGF) 36.11°N / 140.10°E Grass 

Takayama flux site   (TKY) 36.14°N / 137.42°E Deciduous broadleaf forest 

Teshio CC-LaG site  (TSE) 45.01°N / 142.11°E Deciduous 

bamboo 

needle-leaf plantation and dwarf 
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1016 Table S2. The standard deviation in the detected SOS across latitudinal and elevation gradients 

 High Latitude: 42°N – 45.5°N 

Deciduous Evergreen 
Elevation (m) Urban Rice paddy Non-rice crop Grass 

forest forest 

0 - 200 13 14 9 8 8 8 

200 - 500 8 9 8 8 7 7 

500 – 3100 8 5 6 11 8 8 

 Medium Latitude: 38.5°N – 42°N 

0 - 200 28 30 24 18 15 19 

200 - 500 18 14 14 14 12 17 

500 – 3100  5 11 8 7 13 

 Low Latitude: 35°N – 38.5°N 

0 - 200 31 30 24 21 17 19 

200 - 500 23 21 19 16 14 19 

500 – 3100 20 18 17 12 13 19 
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Table S3. The standard deviation in the detected EOS across latitudinal and elevation gradients 1033 

 High Latitude: 42°N – 45.5°N 

Elevation (m) 
Urban Rice paddy Non-rice crop Grass Deciduous 

forest 

Evergreen 

forest 

0 - 200 20 20 15 11 9 10 

200 - 500 17 17 11 8 8 7 

500 – 3100 8 9 4 11 9 10 

 Medium Latitude: 38.5°N – 42°N 

0 - 200 25 16 24 23 23 25 

200 - 500 20 21 20 14 12 18 

500 – 3100  1 10 15 7 8 

 Low Latitude: 35°N – 38.5°N 

0 - 200 27 22 23 26 24 27 

200 - 500 27 28 26 21 20 34 

500 – 3100 26 29 26 17 17 34 
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Table S4. The standard deviation in the detected SOF across latitudinal and elevation gradients 1050 

 High Latitude: 42°N – 45.5°N 

Elevation (m) 
Urban Rice paddy Non-rice crop Grass Deciduous 

forest 

Evergreen 

forest 

0 - 200 20 10 11 15 13 17 

200 - 500 10 8 12 14 11 13 

500 – 3100 11 6 8 14 12 14 

 Medium Latitude: 38.5°N – 42°N 

0 - 200 20 14 16 16 16 18 

200 - 500 12 15 13 13 14 17 

500 – 3100  9 12 12 12 13 

 Low Latitude: 35°N – 38.5°N 

0 - 200 24 17 20 19 20 22 

200 - 500 22 20 19 15 19 23 

500 – 3100 16 20 17 15 17 22 
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Table S5. The standard deviation in the detected EOF across latitudinal and elevation gradients 1067 

 High Latitude: 42°N – 45.5°N 

Elevation (m) 
Urban Rice paddy Non-rice crop Grass Deciduous 

forest 

Evergreen 

forest 

0 - 200 20 17 17 33 23 27 

200 - 500 16 7 12 18 14 15 

500 – 3100 8 4 5 15 12 14 

 Medium Latitude: 38.5°N – 42°N 

0 - 200 27 22 23 18 17 17 

200 - 500 14 11 10 10 10 11 

500 – 3100  4 7 7 8 9 

 Low Latitude: 35°N – 38.5°N 

0 - 200 47 34 34 30 21 25 

200 - 500 27 21 20 16 14 24 

500 – 3100 17 17 16 14 12 19 
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Table S6. Summary of the regression statistics. 1084 

 
x=PEN, y=AHI         

 
x=PEN, y=MODIS      

 

 
x=AHI, y=MODIS      

 

 

R2 Intercept Slope p R2 Intercept Slope 
 

p R2 Intercept Slope 
 

p 

SOS 0.75 -26.46 1.23 <0.001 0.46 -9.71 1.11 <0.05 0.59 16.21 0.88 <0.005 
  

EOS 0.43 15.05 0.95 <0.05 0.01 156.84 0.10 >0.5 0.13 128.94 0.28 >0.5 
  

SOF 7E-8 243.10 5E-3 >0.5 1E-3 146.99 0.42 >0.5 4E-3 167.72 0.36 >0.5 
  

EOF 0.49 55.52 0.89 <0.05  0.41 -34.00 1.14 <0.05  0.57 -30.04 1.05 <0.005 
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Supplementary figures 1108 

 1109 

Figure S1. The abrupt changes in crop cover between September 17 and October 25, 2016 at the MSE 

site. The top, middle and bottom panels showing images of crop harvest, emergence of rice stubble 

sprouts and the removal of stubble sprouts by plowing, respectively. 
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 1116 

Figure S2. Phenological detection results for ROI2 and ROI3 at the MSE site. Solid green circles 

represent the original snow-free GCC, respectively. The grey solid lines represent the reconstructed 

greenness trajectories. The blue dashed lines represent the detected SOS and EOS whereas orange dashed 

lines represent SOF and EOF. 
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  1133

Figure S3. The spatial pattern of EOF outliers (a) and a high-resolution Google Earth image (b) in the coastal areas of northern Japan. The 

acquisition date of the Google Earth image is 12/30/2016. 
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 1144 

Figure S4. The 20min EVI2 (top row) and hourly photographs (bottom row) between 09:00 and 15:00 at the MTK site on September 06, 2016. 
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  1147

Figure S5. The 20min EVI2 (top row) and 90min photographs (bottom row) between 09:00 and 15:00 at the TKY site on September 01, 2016. 
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 1154 

              Figure S6. The rapid harvest and regrowth of grass during summer at the TGF site in 2015 and 2016. Day of year is reported at the lower 

right corner of each panel. 
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